Machine Learning with Go Quick Start Guide

Machine Learning with Go Quick Start Guide

eBook Details:

  • Paperback: 168 pages
  • Publisher: WOW! eBook (May 31, 2019)
  • Language: English
  • ISBN-10: 1838550356
  • ISBN-13: 978-1838550356

eBook Description:

Machine Learning with Go Quick Start Guide: This quick start guide will bring the readers to a basic level of understanding when it comes to the Machine Learning (ML) development lifecycle, will introduce Go ML libraries and then will exemplify common ML methods such as Classification, Regression, and Clustering

Machine learning is an essential part of today’s data-driven world and is extensively used across industries, including financial forecasting, robotics, and web technology. This book will teach you how to efficiently develop machine learning applications in Go.

The book starts with an introduction to machine learning and its development process, explaining the types of problems that it aims to solve and the solutions it offers. It then covers setting up a frictionless Go development environment, including running Go interactively with Jupyter notebooks. Finally, common data processing techniques are introduced.

The book then teaches the reader about supervised and unsupervised learning techniques through worked examples that include the implementation of evaluation metrics. These worked examples make use of the prominent open-source libraries GoML and Gonum.

The book also teaches readers how to load a pre-trained model and use it to make predictions. It then moves on to the operational side of running machine learning applications: deployment, Continuous Integration, and helpful advice for effective logging and monitoring.

  • Understand the types of problem that machine learning solves, and the various approaches
  • Import, pre-process, and explore data with Go to make it ready for machine learning algorithms
  • Visualize data with gonum/plot and Gophernotes
  • Diagnose common machine learning problems, such as overfitting and underfitting
  • Implement supervised and unsupervised learning algorithms using Go libraries
  • Build a simple web service around a model and use it to make predictions

At the end of the Machine Learning with Go Quick Start Guide book, readers will learn how to set up a machine learning project for success, formulating realistic success criteria and accurately translating business requirements into technical ones.


1 Response

  1. April 8, 2020

    […] Machine Learning With Go, 2nd Edition: Infuse an extra layer of intelligence into your Go applications with machine learning and AI […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.