Python for Finance Cookbook

Python for Finance Cookbook

eBook Details:

  • Paperback: 432 pages
  • Publisher: WOW! eBook (February 11, 2020)
  • Language: English
  • ISBN-10: 1789618517
  • ISBN-13: 978-1789618518

eBook Description:

Python for Finance Cookbook: Solve common and not-so-common financial problems using Python libraries such as NumPy, SciPy, and pandas

Python is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries.

In this book, you’ll cover different ways of downloading financial data and preparing it for modeling. You’ll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you’ll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You’ll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you’ll work through an entire data science project in the financial domain. You’ll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You’ll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you’ll focus on learning how to use deep learning (PyTorch) for approaching financial tasks.

  • Download and preprocess financial data from different sources
  • Backtest the performance of automatic trading strategies in a real-world setting
  • Estimate financial econometrics models in Python and interpret their results
  • Use Monte Carlo simulations for a variety of tasks such as derivatives valuation and risk assessment
  • Improve the performance of financial models with the latest Python libraries
  • Apply machine learning and deep learning techniques to solve different financial problems
  • Understand the different approaches used to model financial time series data

By the end of this Python for Finance Cookbook book, you’ll have learned how to effectively analyze financial data using a recipe-based approach.

DOWNLOAD

3 Responses

  1. May 7, 2020

    […] for Finance […]

  2. June 26, 2020

    […] Hands-On Deep Learning for Finance book will serve as a continuing reference for implementing deep learning models to build […]

  3. June 26, 2020

    […] Hands-On Deep Learning for Finance book will serve as a continuing reference for implementing deep learning models to build […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.