Hands-On Ensemble Learning with Python

Hands-On Ensemble Learning with Python

eBook Details:

  • Paperback: 298 pages
  • Publisher: WOW! eBook (July 19, 2019)
  • Language: English
  • ISBN-10: 1789612853
  • ISBN-13: 978-1789612851

eBook Description:

Hands-On Ensemble Learning with Python: Combine popular machine learning techniques to create ensemble models using Python

Ensembling is a technique of combining two or more similar or dissimilar machine learning algorithms to create a model that delivers superior predictive power. This book will demonstrate how you can use a variety of weak algorithms to make a strong predictive model.

With its hands-on approach, you’ll not only get up to speed on the basic theory but also the application of various ensemble learning techniques. Using examples and real-world datasets, you’ll be able to produce better machine learning models to solve supervised learning problems such as classification and regression. Furthermore, you’ll go on to leverage ensemble learning techniques such as clustering to produce unsupervised machine learning models. As you progress, the chapters will cover different machine learning algorithms that are widely used in the practical world to make predictions and classifications. You’ll even get to grips with the use of Python libraries such as scikit-learn and Keras for implementing different ensemble models.

  • Implement ensemble methods to generate models with high accuracy
  • Overcome challenges such as bias and variance
  • Explore machine learning algorithms to evaluate model performance
  • Understand how to construct, evaluate, and apply ensemble models
  • Analyze tweets in real time using Twitter’s streaming API
  • Use Keras to build an ensemble of neural networks for the MovieLens dataset

By the end of this Hands-On Ensemble Learning with Python book, you will be well-versed in ensemble learning, and have the skills you need to understand which ensemble method is required for which problem, and successfully implement them in real-world scenarios.


1 Response

  1. June 23, 2020

    […] Ensemble Learning for AI Developers: Learn Bagging, Stacking, and Boosting Methods with Use Cases: Covers the effective use of ensemble concepts and popular libraries such as Keras, Scikit-Learn, TensorFlow, and PyTorch […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.