Beginning MLOps with MLFlow

Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure

eBook Details:

  • Paperback: 344 pages
  • Publisher: WOW! eBook (December 8, 2020)
  • Language: English
  • ISBN-10: 1484265483
  • ISBN-13: 978-1484265482

eBook Description:

Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure

Integrate MLOps principles into existing or future projects using MLFlow, operationalize your models, and deploy them in AWS SageMaker, Google Cloud, and Microsoft Azure. ​This Beginning MLOps with MLFlow book guides you through the process of data analysis, model construction, and training.

What You Will Learn

  • Perform basic data analysis and construct models in scikit-learn and PySpark
  • Train, test, and validate your models (hyperparameter tuning)
  • Know what MLOps is and what an ideal MLOps setup looks like
  • Easily integrate MLFlow into your existing or future projects
  • Deploy your models and perform predictions with them on the cloud

The authors begin by introducing you to basic data analysis on a credit card data set and teach you how to analyze the features and their relationships to the target variable. You will learn how to build logistic regression models in scikit-learn and PySpark, and you will go through the process of hyperparameter tuning with a validation data set. You will explore three different deployment setups of machine learning models with varying levels of automation to help you better understand MLOps. MLFlow is covered and you will explore how to integrate MLOps into your existing code, allowing you to easily track metrics, parameters, graphs, and models. You will be guided through the process of deploying and querying your models with AWS SageMaker, Google Cloud, and Microsoft Azure. And you will learn how to integrate your MLOps setups using Databricks.

DOWNLOAD

5 Responses

  1. March 25, 2021

    […] Science Solutions on Azure: Tools and Techniques Using Databricks and MLOps: Covers Azure Cognitive Services API for AI […]

  2. March 25, 2021

    […] Science Solutions on Azure: Tools and Techniques Using Databricks and MLOps: Covers Azure Cognitive Services API for AI […]

  3. April 24, 2021

    […] MLOps: Get up and running with machine learning life cycle management and implement MLOps in your […]

  4. July 28, 2021

    […] Science Solutions on Azure: Tools and Techniques Using Databricks and MLOps: Covers Azure Cognitive Services API for AI […]

  5. February 16, 2022

    […] Engineering MLOps: Get up and running with machine learning life cycle management and implement MLOps in your organization […]

Leave a Reply

Your email address will not be published.