Advanced R Statistical Programming and Data Models

Advanced R Statistical Programming and Data Models

eBook Details:

  • Paperback: 638 pages
  • Publisher: WOW! eBook; 1st edition (February 21, 2019)
  • Language: English
  • ISBN-10: 1484228715
  • ISBN-13: 978-1484228715

eBook Description:

Advanced R Statistical Programming and Data Models: Analysis, Machine Learning, and Visualization

Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples using R to achieve results, and concludes with a case study.

What You’ll Learn

  • Conduct advanced analyses in R including: generalized linear models, generalized additive models, mixed effects models, machine learning, and parallel processing
  • Carry out regression modeling using R data visualization, linear and advanced regression, additive models, survival / time to event analysis
  • Handle machine learning using R including parallel processing, dimension reduction, and feature selection and classification
  • Address missing data using multiple imputation in R
  • Work on factor analysis, generalized linear mixed models, and modeling intraindividual variability

Written by Matt and Joshua F. Wiley, Advanced R Statistical Programming and Data Models shows you how to conduct data analysis using the popular R language. You’ll delve into the preconditions or hypothesis for various statistical tests and techniques and work through concrete examples using R for a variety of these next-level analytics. This is a must-have guide and reference on using and programming with the R language.

DOWNLOAD

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *