Mastering pandas – Second Edition

Mastering pandas, 2nd Edition

eBook Details:

  • Paperback: 674 pages
  • Publisher: WOW! eBook (October 25, 2019)
  • Language: English
  • ISBN-10: 1789343232
  • ISBN-13: 978-1789343236

eBook Description:

Mastering pandas, 2nd Edition: Perform advanced data manipulation tasks using pandas and become an expert data analyst

pandas is a popular Python library used by data scientists and analysts worldwide to manipulate and analyze their data. This book presents useful data manipulation techniques in pandas to perform complex data analysis in various domains.

An update to our highly successful previous edition with new features, examples, updated code, and more, this book is an in-depth guide to get the most out of pandas for data analysis. Designed for both intermediate users as well as seasoned practitioners, you will learn advanced data manipulation techniques, such as multi-indexing, modifying data structures, and sampling your data, which allow for powerful analysis and help you gain accurate insights from it. With the help of this book, you will apply pandas to different domains, such as Bayesian statistics, predictive analytics, and time series analysis using an example-based approach. And not just that; you will also learn how to prepare powerful, interactive business reports in pandas using the Jupyter notebook.

  • Speed up your data analysis by importing data into pandas
  • Keep relevant data points by selecting subsets of your data
  • Create a high-quality dataset by cleaning data and fixing missing values
  • Compute actionable analytics with grouping and aggregation in pandas
  • Master time series data analysis in pandas
  • Make powerful reports in pandas using Jupyter notebooks

By the end of this Mastering pandas, Second Edition book, you will learn how to perform efficient data analysis using pandas on complex data, and become an expert data analyst or data scientist in the process.


Leave a Reply

Your email address will not be published. Required fields are marked *