Machine Learning for Finance [Video]

Machine Learning for Finance

Machine Learning for Finance [Video]

English | MP4 | AVC 1920×1080 | AAC 48KHz 2ch | 4h 30m | 5.07 GB
eLearning | Skill level: All Levels

Machine Learning for Finance [Video]: Machine Learning techniques for solving major financial issues

Machine Learning for Finance is a perfect course for financial professionals entering the fintech domain. It shows how to solve some of the most common and pressing issues facing institutions in the financial industry, from retail banks to hedge funds.

This video course focuses on Machine Learning and covers a range of analysis tools, such as NumPy, Matplotlib, and Pandas. It is packed full of hands-on code simulating many of the problems and providing working solutions.

This course aims to build your confidence and the experience to go ahead and tackle real-life problems in financial analysis. The industry is adopting automatic, data-driven algorithms at a rapid pace, and Machine Learning for Finance gives you the skills you need to be at the forefront.

  • How to tackle problems in Fintech and financial investments
  • Learn feature engineering, EDA and understanding with regards to financial data
  • Build an ANN-based model for predicting the stock prices
  • Enhance your Machine Learning skills with ensemble models like random forest and XGBoost
  • Enhance your understanding of Neural Networks to build regression-based models
  • Learn how to identify fraudulent transactions by building a fraud detection model by using classification models
  • Achieve efficient frontier by using features like Sharpe ratios and risk management

By the end of this course, you will be equipped with all the tools from the world of Financial Analysis, machine learning and deep learning essential for tackling all these pressing issues in the area of Fintech.

1 2 3 4

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.