Interpretable Machine Learning with Python, Second Edition

Interpretable Machine Learning with Python, 2nd Edition

eBook Details:

  • Paperback: 606 pages
  • Publisher: WOW! eBook; 2nd edition (October 31, 2023)
  • Language: English
  • ISBN-10: 180323542X
  • ISBN-13: 978-1803235424

eBook Description:

Interpretable Machine Learning with Python, 2nd Edition: A deep dive into the key aspects and challenges of machine learning interpretability using a comprehensive toolkit, including SHAP, feature importance, and causal inference, to build fairer, safer, and more reliable models.

Interpretable Machine Learning with Python, Second Edition, brings to light the key concepts of interpreting machine learning models by analyzing real-world data, providing you with a wide range of skills and tools to decipher the results of even the most complex models.

Build your interpretability toolkit with several use cases, from flight delay prediction to waste classification to COMPAS risk assessment scores. This book is full of useful techniques, introducing them to the right use case. Learn traditional methods, such as feature importance and partial dependence plots to integrated gradients for NLP interpretations and gradient-based attribution methods, such as saliency maps.

In addition to the step-by-step code, you’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability.

  • Progress from basic to advanced techniques, such as causal inference and quantifying uncertainty
  • Build your skillset from analyzing linear and logistic models to complex ones, such as CatBoost, CNNs, and NLP transformers
  • Use monotonic and interaction constraints to make fairer and safer models
  • Understand how to mitigate the influence of bias in datasets
  • Leverage sensitivity analysis factor prioritization and factor fixing for any model
  • Discover how to make models more reliable with adversarial robustness

By the end of the Interpretable Machine Learning with Python, 2nd Edition book, you’ll be confident in tackling interpretability challenges with black-box models using tabular, language, image, and time series data.


Leave a Reply

Your email address will not be published. Required fields are marked *